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Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models
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This paper shows the essence of conservation forms when applying the weak solution theory to solve the
traveling wave solution of a wide cluster in the Payne-Whitham (PW) model. The consideration of the con-
servation form for the acceleration equation is an important ingredient in the development of higher-order
traffic flow models, but it is largely ignored in the research community. To fix the idea, we define two
conservation forms for the same PW model, and consequently derive two solutions with different sets of
characteristic parameters of the wide cluster. The analytical results are in good agreement with those that are
obtained from numerical simulations. Moreover, these two solutions are also shown to be asymptotic to those
of the well-known Kiihne and Kerner-Konhaiiser models with a viscosity term. More importantly, the careful
treatment of the conservation form for the acceleration equation closes the important gap in the literature.
Without the conservation form, the solution obtained depends very much on the design of numerical schemes,
and can be quite arbitrary and may not adequately conform to the physically relevant properties.
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I. INTRODUCTION

Macroscopic models have played important roles in de-
scribing many nonlinear complexities in traffic flow since the
proposition of the Lighthill-Whitham-Richards (LWR)
theory [1,2]. In this theory, vehicles on a highway as a whole
are viewed as a continuum with a density p, an average v,
and a flow g=pv, which are functions of location x and time
t. From the conservation of mass as in fluid dynamics, the
temporal change in density is related to the spatial change in
flow rate such that
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With a velocity-density relation v=v,(p), Eq. (1) becomes
complete and constitutes the well-known LWR model. This
model is fundamental for the study of hyperbolic waves and
describes some basic nonlinear phenomena in traffic flow
[3,4]. Recent attempts have also been made to extend the
model to heterogeneous drivers [5-7].

To retrieve the dynamics in traffic, Payne [8] and
Whitham [3] took acceleration into account. Together, these
studies are known as the PW model. Other descriptions of
the acceleration have followed, e.g., in [9—14]. The accelera-
tion of all of these models takes a similar form as follows:
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which together with Eq. (1) constitutes the macroscopic traf-
fic flow model. Here, the three terms on the right-hand side
are related to physical forces of relaxation (or fluctuation),
pressure, and viscosity, respectively, and cy(p) (>0) is the
sound speed. If »=0, then the system is called a nonviscous
model; otherwise, it is classified as a viscous model. The
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models that Kiihne [9] and Kerner and Konhaiiser (KK)
[10,11] proposed belong to the class of viscous models with
v being a positive constant and v=u/p, where u is a positive
constant. In addition, Eq. (2) reduces to the PW model for
v=0. For simplicity in our discussion, c,(p) is assumed to be
a constant, i.e., ¢y(p) =c.

The most remarkable feature of the three aforementioned
higher-order models (and probably some others) is their abil-
ity to reproduce stop-and-go waves. Such numerical ex-
amples were widely reported, such as in [10,15], adopting a
non-convex equilibrium  flow-density function ¢,(p)
=pv,(p). These examples are typical of phase transitions
between free, congested, and jam traffic states. In the transi-
tion, traffic dynamics is rich in hysteresis by which vehicular
acceleration and deceleration paths are different in the phase
diagram. For a wide cluster of stop-and-go waves, the phase
plot can be represented by a straight line, which suggests that
the structure of the cluster is a traveling wave solution. As
important nonlinear complex phenomena, stop-and-go waves
have been widely observed and reported through field studies
[16,17]. Therefore, for the study of a higher-order model, it
is theoretically significant to determine the parameters of the
cluster, such as the maximal and minimal densities and the
propagation speed.

However, the essence of the conservation form of an ac-
celeration equation has not yet been well recognized in the
traffic flow research community. This is probably because a
“pressure” or “fluctuation” in traffic flow problems is merely
a generalized force, and thus the conservation of “momen-
tum” pv is not required. Consequently, in many studies the
velocity v or flow pv was casually used as a solution variable
without specific definition of a clear conservation form of the
acceleration equation. In this paper, we emphasize that de-
fining such a conservation form is essential because only so
can the solution be uniquely determined in the presence of
discontinuities. See [3,18-21] for detailed accounts of the
related weak solution theory of hyperbolic conservation
laws.
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To show this essence in the present paper, we define two
conservation forms of the PW model with v and pv as the
conservative variables, which are, respectively, called con-
servation form 1 (CF1) and conservation form 2 (CF2). In
the context of the aforementioned wide cluster, we adopt the
two conservation forms to indicate two different traveling
wave solutions analytically, each with determined character-
istic parameters. A cornerstone in each investigation is the
application of the Rankine-Hugoniot conditions at the up-
stream front of the cluster, which proves to be a shock. We
should mention that some algebraic equations of the param-
eters were also acquired in a recent study [15], but they were
not sufficient to ensure a deterministic description because of
the incomplete application of the Rankine-Hugoniot condi-
tions. A relevant description can also be found in a recent
report [22], in which the “anisotropic” traffic flow model
Jiang er al. [23] proposed was adopted.

Defining the two conservation forms is also for the pur-
pose of relating the PW model to the Kiihne and KK models.
Each of the two viscous models should also be written in a
certain conservation form according to the viscosity term
VU, OF Uv,,. As the viscosity coefficient v (or w) vanishes,
actually the Kiihne (or KK) model possesses the same con-
servation form as CF1 (or CF2) of the PW model. This sug-
gests that the former solution is asymptotic to that of the
latter, according to the weak solution theory. Such relations
are analogous to that between the inviscid and viscid Bur-
gers’ equations, or more generally that between hyperbolic
conservation laws and their diffusive versions. See [3,19,20].

We note that the asymptotic theory can be applied to a
viscous higher-order traffic flow model for solving the pa-
rameters of wide clusters. By the theory Kerner er al. [11]
obtained the same algebraic equations as ours that are based
on CF2. However, these parameters are merely “asymptotic”
to the true values in the KK model with errors of the order
O(u), whereas they are exact in the PW model, correspond-
ing to CF2. This is in accordance with the above arguments.
When adopting the Kiihne model and following similar dis-
cussion in [11] (or the references therein), it is expected to
derive the same algebraic equations as ours that are based on
CF1. Similarly, the resultant parameters are exact in the PW
model, corresponding to CF1, whereas they are “asymptotic”
to the true values in the Kiihne model. Derivations of
the referred algebraic equations from the asymptotic theory
are expatiatory; they are not included in the forthcoming
discussion.

Section II derives the characteristic parameters of a wide
cluster in the PW model, in which many of the above argu-
ments are highlighted. To support our conclusions, numerical
simulation is implemented in Sec. III to generate clusters in
their fully developed stage, namely for r— . As expected,
these parameter values that are acquired from numerical ex-
amples agree very well with those that are derived analyti-
cally. In Sec. IV, we conclude the paper with several
remarks.

II. DERIVATION OF CHARACTERISTIC PARAMETERS
OF A WIDE CLUSTER

If »=0, then Egs. (1) and (2) represent the PW model. For
a flow function ¢,(p)=pv,(p) that is concave for some lower
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FIG. 1. Traveling wave solution with an upstream and a
downstream front; (a) steady density distribution in the transformed
coordinate; and (b) phase states (p,g) in comparison with the
fundamental diagram g=q.(p).

density region but convex for the other, say with
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we consider a traveling wave solution in this section. Here,
vy is the free flow velocity that is close to v,(0), p,, is the
maximal density such that v,(p,,) is nearly zero [10,25], and
the constants 0.25 and 0.06 are adjustable to empirical data.
We note that adopting other nonconvex flow functions gives
rise to similar properties.

We are now concerned with a traveling wave solution
with propagation speed a (Fig. 1). For this we anticipate a
wide cluster that is characterized by a jam p=pp and free
flow p=p, in its surroundings. In Fig. 1(a) we assume that
this solution consists of three constant flows with an up-
stream front and a downstream front in between. In Fig. 1(b),
the aforementioned constant flows are assumed to be in equi-
librium with g,=¢.(p4) and gg=¢.(pg), which are in the con-
cave and convex parts of the fundamental diagram. Here, we
refer to “a wide cluster” such that the constant region of p
=pg in Fig. 1(a) is sufficiently long. This includes the limit
case in which p=pp reduces to a single state. Referring to
Fig. 1(a), we note that the cluster as a traveling wave solu-
tion can propagate with unchanged profile when assuming an
initial or an initial and (periodic) boundary value problem
and taking the whole profile as the initial state.
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A. Downstream front of the cluster

For a smooth piece (presumably the upstream or down-
stream front) that links two adjacent constant states, we
make the transformation: p(x,f)=p(X) and v(x,t)=v(X),
with X=x—a. Substituting these into Egs. (1) and (2) leads to

dp _ q.(p)—q

—= qg=ap+qy, 4)
dX " e}~ (q/p)*] 0

= g(p),

where g, is an integral constant. See also [3] for a similar
derivation in which a strictly concave function ¢.(p) was
assumed. The second equation of Eq. (4) suggests that the
phase diagram of the smooth solution piece corresponds to a
segment of a straight line in the density-flow plane, which
has a slope a. Suppose that the smooth piece connects the
two constant flow states [ps,q.(ps)] and [pp.q.(pp)]. The
segment is then indicated as AB in Fig. 1(b) with slope a
< 0. Thus it is also implied by Eq. (4) that ¢g,>0.

We note that any smooth piece determined by the first
equation of Eq. (4) is valid only if p is monotone of X.
Otherwise, we would obtain multiple solutions of p(X) in the
inverse curve X=[?[g(p)]"'dp. For this case, the two states
should be separated by a shock, as will be described in the
following section. For the smooth piece, we assume an equi-
librium state (pc,qc), which is the intersection of segment
AB and curve g=g¢,(p) [Fig. 1(b)]. The numerator of g(p) in
Eq. (4) then changes from a positive sign in py <p<pc to a
negative sign in p-<p<pp. Therefore the denominator of
g(p) changes sign accordingly. This can be satisfied if and
only if

90 .
pe= with ¢,(pc) = apc+ qo. (5)

0

by which the denominator of g(p) changes from a negative
sign in py <p<pc to a positive sign in po<p<pp. This
ensures that dp/dX=g(p) <0 in the set (p,,pc) U (pc, pg). At
the intersection C, p=g,/c, must be a removable singularity
of the function g(p), and this is also ensured by Eq. (5) with

dp . dp (g.(p) = q)’
— = hm = llm 2—2,
dx p=pc P—PC dX  p—pc 7'[C() - (q0/p)7]
q;(Pc) —a
= p 1P Z8
pe 27'0(2)

where g,(pc) <a is self-evident through Fig. 1(b).

In summary, we can only have dp/dX=g(p)<0 for p
€ (pa,pp). With one parameter fixed, other parameters can
be solved from the above equations. Given p., for example,
qo and a can be solved explicitly from Eq. (5). Thus p, and
pp can be solved as the intersections between the curve
q=q.(p) and the segment AB. Namely, we have

0= q.(p4) — q.(pp)
Pa— PB

. q0=4q.(ps) —ap,, or (6)
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90=q.(pp) — app.

We note that the smooth connection between the discussed
smooth piece and the constant flow p=p, (or p=pp) is en-
sured by dp/dX|p=pA=g(pA)=0 [or dp/dX|p=pB=g(pB)=O].
Furthermore it is of much interest to derive from Eq. (5) that
a=v,(pc)—cy, which is also the first characteristic speed at
the equilibrium state C. In other words, the propagation of
the first characteristic at the transition synchronizes the
traveling wave.

Obviously, the above discussion is suited only to the
downstream front of the cluster considered, which links the
upper region p=pp to the lower region p=p,. For such a
smooth piece, we note that a conservation form of the system
is unnecessary because no discontinuity is involved. As there
is one degree of freedom left for parameters p,, pg, and a, an
additional equation is still needed for a deterministic descrip-
tion of the cluster. We therefore turn our attention to the
upstream front.

B. Upstream front of the cluster

Smooth connection at the upstream front is impossible
because of the aforementioned requirement that the density
p(X) must be monotonic decreasing. To avoid the problem
being ill-posed, the requirement for smoothness has to be
relaxed and a discontinuity must be introduced to separate
the two constant flows p=p, and p=pz. To determine this
discontinuity, the model equations should be written in
conservation forms.

Equation (1) is for the mass conservation with specific
physical meanings, which means that it cannot be altered.
However, the conservation for Eq. (2) is largely ignored in
traffic flow problems. For the reasons that are mentioned in
Sec. I, we define two conservation forms for Eq. (2). This
means that we consider two systems of the PW model, the
solutions of which are different if there is any discontinuity.
First, we define the following:

CF1:

v d
—+—(0.502 + 0(2) Inp) =

at  ox M

Ue(P) —U
-
Then, we view the “momentum” g=pv to be conservative

and thus define
CF2:

aq J , 2
—+ —(g°/p+cyp) =
at  ox (a7p Op)

q.(p) —q _ ®)

We derive these forms from Egs. (1) and (2) through
differentiation.
Denote a general conservation system by the following:

ou  If(u)

—+—=s(u). 9

ot ox (w) ©)
Note that a system with source terms is also called balance
laws. Assume that 7> 7, for some certain 7,> 0. Thus source
term s(u) is smooth and bounded. With this assumption, we
emphasize that the Rankine-Hugoniot conditions are appli-
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cable to Eq. (9) and remain the same as those for the case of
s(u)=0. We assume that two solution states, u, and ug, are
separated by a discontinuity with wave speed a. Then the
Rankine-Hugoniot conditions read:

f(“A) —f(“B) =a(uA_MB)- (10)

Note that the above vector form is applied component by
component, and that a shock structure described by Eq. (10)
also constitutes a traveling wave solution.

We set u=(p,v), fu)=(pv,0.50>+ciInp), and
s(u)={0, 7 '[v,(p)-v]}’, by which Eq. (9) stands for the sys-
tem of Egs. (1) and (7). Being relevant to the upstream front
(Fig. 1), we substitute these into Eq. (10) to yield two equa-
tions; one coincides with the first equation of Eq. (6), and the
other is arranged as the following:

CF1:

C% In pa/pg
v.(pa) = v.(pp)

Equations (5), (6), and (11) together constitute the set
of equations for the determination of the characteristic
parameters of the cluster.

Seting  u=(p,q)", f(u)=(q.q*/p+cip)’, and s(u)
={0, 7 '[¢.(p)—¢q]}7, by which Eq. (9) stands for the system
of Egs. (1) and (8), we similarly obtain

CF2:

a= O'S[Ue(pA) + Ue(pB)] + (l 1)

_ vﬁ(pA)pA - US(PB)PB C(z)(PA - PB)
2.(pa) — a.(pp)  q.(pa) —q.(pp)

Equations (5), (6), and (12) are used to determine the param-
eters in the system of Egs. (1) and (8).

It is evident that weak (discontinuous) solutions for CF1
and CF2 are different because Eqs. (11) and (12) are differ-
ent. In other words, the system of Egs. (1) and (7) is different
from the system of Egs. (1) and (8) in the sense of weak
solution. See [3,18-21] for detailed accounts about the
theory.

(12)

C. Characteristic parameters of the cluster

The parameters p,, pp, pc, @, and g, can only be deter-
mined implicitly for each system. Precisely, these can be
reduced to two unknowns with two equations. In the system
of Egs. (1) and (7), the two equations are acquired from Egs.
(5), (6), and (11), and can be arranged as follows:

CF1:

PaPslV.(pa) — v (pp)] 9.(Pa) = q.(pa) _
= Ue(pC) - = Co,
pclpp = pa) Pa— Ps
(13)

where pc is the density of the unique intermediate
equilibrium state in the transition layer,

2 In(ps/pp)
Pc = PAPB B > -
Pp = Pa

B

In the system of Egs. (1) and (8), an alternative form can
similarly be obtained by Egs. (5), (6), and (12),
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FIG. 2. (Color online) Dependency of characteristic parameters
on the sound speed, illustrated as curves for a wide sound speed
range. (a) For CF1 and (b) for CF2.

CF2:

pclvelps) —velpp)]

q.(pa) = q.(pa) _
- ve(pC) - =
PB~ Pa

Pa— PB

Cop-
(14)

In Eq. (14), it is interesting to find that p. is the geometric
average of p, and pg, i.e.,

—
Pc=\NpPaPs-

From Egs. (5)—(14), all parameters of the two systems are
only dependent on the sound speed c, the free flow velocity
v, and the jam density p,,. Let the dimensionless variables
with a bar correspond to the density that is scaled by p,, and
the velocity by v,. It is then convenient to examine that all
parameters depend only on c¢,. For CF1 and CF2, the depen-
dencies are shown in Fig. 2 by several curves for a
wide range of ¢,. The values of the parameters are also given
in Table I. Note that the maximal density pg is not valid
for ¢3=<0.5 in CFl and for ¢y=<0.3 in CF2. Compared
with the data acquired from field studies (e.g., in [17]), CF2
seems to give a more realistic description, especially for
0.33<¢;<0.40 that suggest these wave speeds approxi-
mately range from 11.5 to 16.5 km per h for v,=30 m/s.
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TABLE I. The minimal and maximal densities p, and pg of a wide cluster as determined by the system of Egs. (1) and (7) and the system
of Egs. (1) and (8) for a given ¢, along with the transition density p. and traveling wave speed a. The cells with an asterisk correspond to

maximal densities pp that are obviously greater than unity and thus invalid.

CF1 CF2
o Pa PB pc a PA Pr pc a
0.30 * * * * 0.09714 1.11416 0.32898 —0.08859
0.34 * * * * 0.10693 0.97766 0.32333 -0.11244
0.35 * * * * 0.10931 0.94904 0.32208 -0.11878
0.40 * * * * 0.12084 0.83021 0.31673 -0.15254
0.45 * * * * 0.13183 0.74125 0.31260 -0.18950
0.50 0.14271 1.00616 0.28494 -0.14160 0.14239 0.67244 0.30944 -0.22921
0.55 0.15263 0.81937 0.28481 -0.19111 0.15263 0.61765 0.30703 -0.27123
0.60 0.16228 0.70171 0.28545 —0.24354 0.16263 0.57283 0.30522 -0.31512
0.65 0.17180 0.62097 0.28660 -0.29794 0.17252 0.53521 0.30387 -0.36050

Furthermore, CF2 also allows a wider range of ¢, for
adjustment to empirical data.

D. Remarks on relations between nonviscous and viscous
models

It is well-known from the weak solution theory that the
system of hyperbolic conservation laws

u;+ fu), =0 (15)
are related to the following standard viscosity system:
ut+f(u)x= [e(u)ux])(' (16)

The physical solution of Eq. (15) is the limit solution of Eq.
(16) when e(u)—0, where e(u) is positive and bounded.
With an extra relaxation term, we can establish a similar
relation between the PW and KK models. Precisely, it is
proper to write Eq. (2) of the KK model in the same conser-
vation form as Eq. (8) with a viscosity term uv,, on the
right-hand side, i.e.,
dg J

2 2
—+ —(g7/p+cyp) =
P ax(q p+cop)

4.(p) —q
+ UV -
r

Through this relation, the solution of the KK model is
asymptotic to that of the PW model for small u, correspond-
ing to CF2. This suggests that the KK model cannot be writ-
ten in the same conservation form as Eq. (7), which corre-
sponds to the PW model in CF1. Otherwise, the resultant
viscosity term (u/p)v,, would be neither bounded nor stan-
dard in comparison to Eq. (16). This also implies that the
coefficient u/p can never vanish regardless of how small the
value of u is, if p is close to zero.

As evidence of the above argument, Kerner et al. [11]
acquired in their model the same equations as those of Eq.
(14) for solving a wide cluster. By these equations, the pa-
rameters of the cluster are approximate to the true values (of
the KK model) with the error O(u), whereas they are exact
for the PW model in CF2. This attainment is consistent with
the aforementioned relation as the viscosity coefficient w
(precisely the term uv,,) vanishes.

The Kiihne model can similarly be written in the same
conservation form as Eq. (7) with a viscosity term vv,, on
the right-hand side, i.e.,

dv d
—+—(0.50*+ ¢ Inp) =
or (?x( olnp)

v.(p)—v
— + Wy,

According to the above discussion, it is clear that the Kiihne
model makes sense through the above relation, and that its
solution is asymptotic to that of the PW model in CF1 for
small positive constant v. Applying the asymptotic theory to
the Kiihne model for solving a wide cluster, as proposed in
[11], we anticipate the same equations as those of Eq. (14)
and the error O(v) of the resultant parameters. This argument
implies that it is inappropriate to write the Kiihne model in
the same conservation form as Eq. (8), which corresponds to
the PW model in CF2. In addition, we note that this inappro-
priate relation would otherwise suggest a viscosity term
pvu,,, which is not standard when comparing to that of
Eq. (16).

Finally, we note that conservative schemes should be ap-
plied for numerical simulations according to the defined or
required conservation forms. See such a conservative scheme
in Sec. III B.

III. PARAMETERS ACQUIRED FROM NUMERICAL
SIMULATION

The instability of the PW model was investigated
in Whitham [3] and later in other studies. The linearization
of the model equations of Egs. (1) and (2) results in the
following wave equation [3,24]:

&+ No&= TN = No)(Ng = N,

where ¢ is the perturbation to the equilibrium flow
[p0.9.(Po)]. No=q.(py) is the kinetic wave speed, and
N2=v.(pg) Fco are the two characteristic speeds at
[p0,9.(po)]. The viscosity term of Eq. (17) indicates that the
equilibrium state [py,q,(po)] is linearly stable if and only if

(17
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FIG. 3. (Color online) Fully
evolved clusters at r=2500 s, by
CF2 with G,=0.5, p=0.22, AP,
=0.04, and 7=8 s. The densities
pa and pp are convergent to those
in Table I with the refinement of
grids. (a)—(c) Distribution of den-
sity p and (d)-(f) Density-flow
states (p,g) in comparison with
the fundamental diagram g=g,(p).
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For a nonconvex function ¢,(p), as the one that is given by
Eq. (3), there are two critical densities, p, and p,, such that
the constant state [py.q,.(p)] is unstable for p. <py<p,,.
but stable elsewhere [24,26]. For the dimensionless vari-
ables, Pe, and Pe, depend only on the sound speed ¢, and the
two curves for this dependency are also shown in Fig. 2. We
note that [p,. . p.,] C[pa.ppl, and thus the free and jam traffic
states A and B of the traveling wave solution are stable.

For the KK model, very close stability conditions for an
equilibrium state were derived in [10].

A. Interpretation of the dynamics

The formation of clusters is related to stability conditions.
Applying the initial conditions in [10]:

16
- ‘1—‘ cosh_z[@(x— B—L)]}, v(x,0) =v,[p(x,0)],

160 7L
p(x,0) = py + Apo{cosh‘z[ a (x - —)}

L 32
(19)

where the last term in the first equality represents the pertur-
bation to the equilibrium flow [py,q.(py)], and [0,L] is the
highway section under consideration. Furthermore, we
assume the following periodic boundary conditions:

p(0,6)=p(L,1), v(0,1) =v(L,1), (20)

by which the highway is viewed as a ring. Stop-and-go
waves can then be induced for p, € (p.,.p,,), and the traffic
will eventually evolve into regular clusters with free flows in
the surrounding as long as f— . Here, the initial conditions
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FIG. 4. (Color online) Fully
evolved clusters at r=2000s, by
CF2 with N=10 000, p=0.22, and
Apy=0.04. (a)—(c) Distribution of
density and (d)-(f) density-flow
states and the fundamental
diagram.
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of Eq. (19) suggest that the number of vehicles is Lp,, which
remains unchanged in the ring for the evolution. Numerical
examples of this were widely reported, such as in [10,15],
and some were given by other higher-order models [23,14].

The formation of the regular clusters are mostly due to the
blow-up of an oscillation, or the interaction of irregular os-
cillations that collide with one another in the ring because
they differ in their propagation speeds. These flow states of
irregular oscillations (driving behavior) are unstable to re-
main in or relax to equilibrium. Therefore they must develop
or merge into regular clusters which are stable solutions ac-
cording to the discussion in Sec. II. As evidence of this,
equilibrium states A and B are always out of the instability
region (Fig. 2). On the other hand, no equilibrium states in
the transition layer can be found except for a single state p
=p,, the behavior of which is essentially different from other
equilibria because the factor p—pc of ¢,(p)—q is removed
[see the discussion for Eq. (5)]. This occurs because most

equilibrium states in this density region are not stable. In
addition, by the perturbation in Eq. (19), the evolution of the
unstable constant solution p=p, into the stable traveling
wave solution is typical of a metastable physical system.

In the following section, we implement numerical simu-
lation but are mostly interested in these fully developed clus-
ters (at large time 7) in the PW model. One can use the same
code to generate numerical results at any time to observe the
aforementioned chaotic traffic flow.

B. Comparison between numerical and analytical parameter
values

We choose py in Eq. (19) to be sufficiently large and in
the unstable range (pcl,pcz). One or more wide cluster [or
cluster(s) very close] is then expected. In general, initial con-
ditions with similar density magnitudes of the integral aver-
age over [0,L] can also sustain the evolution of the wide
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FIG. 5. (Color online) Fully evolved clusters at t=1500 s, by
CF2 with ¢y=0.60, N=10000, 7=4 s; the initial conditions are
given by Eq. (22) with p~=0.23 and p*=0.22. (a) Distribution of
density and (b) density-flow states and the fundamental diagram.

cluster(s). In this regard, we note that the periodic boundary
conditions are essential for the evolution because they guar-
antee unchanged integral average density over (or total ve-
hicular number in) the interval. Moreover, they ensure the
propagation of these clusters through the boundaries.
Through comparison between the analytical and numerical
data of the parameters of a wide cluster, we can confirm that
the numerical solutions are asymptotical to the described
traveling wave solutions.
For this, we apply
difference scheme

the first-order Lax-Friedrichs

(n+1 (n)

u; (f<+1/2 ff’1,2)+At(’1)s(ul(’l>), (21)

which corresponds to the general system (9). In the scheme,

An) . .
fg'd 1, is the numerical flux given by

f<+1/2— [f(“(n))"'f(”fﬂ) 1(2)1 (n))]

\al),

where Ny ,=v * ¢, are the two characteristic speeds, and the
maximum is taken over u ) for all i at time level n. Further-
more, the CFL condition for the numerical stability is taken
as

PHYSICAL REVIEW E 74, 026109 (2006)

0.81173 0.80752

0.8} ‘
I 7
[ |
I |
?
|
|
|
|
!
;
1

B ——8-———8 — — 8 —

0.6
0.4

0.2

'
—

>
ol

01}

0.05}

0 1 1
) O 02 04 06 08 pi

FIG. 6. (Color online) Fully evolved cluster at rt=3000 s, by
CF1 with ¢;=0.55, N=10000, 7=6 s; the initial conditions are
given by Eq. (22) with p~=0.26 and p*=0.31. (a) Distribution of
density and (b) density-flow states and the fundamental diagram.

The Godunov scheme appears to be a good choice. How-
ever, this is very costly because the application of the exact
Riemann solver is implicit and thus considerable iterations
are needed. For convenience of illustration and comparison,
the dimensionless variables p, g=g/(p,v,), and X=x/L are
applied in all figures, with v,=30 m/s and L=10 000 m, and
the value of p,, is unnecessary.

Figure 3 shows the numerical results with all quantities
needed in the caption or above the figures. The resultant
parameters, namely the values of maximal and minimal den-
sities, are shown in the figures. As the grid is refined, p4 and
pp [Figs. 3(a)-3(c)] become closer to those that are listed in
Table I. We can also observe from the positions of the cluster
that the backward-moving wave is slightly slower (from the
left to the right). In Figs. 3(d)-3(f), the phase plots are shown
on the fundamental diagram g=q,(p) for easy comparison.
We can see that (with the refinement) the acceleration path of
the transition layer moves closer to a segment from pg to p,,
as is indicated in Fig. 1(b). Note that the braking across the
upstream front is now replaced by the upper curve that fol-
lows the path from p, to pgz. This is due to the numerical
viscosity that inevitably smooths the shock profile in all nu-
merical schemes. In a similar way, Fig. 4 shows the resultant
clusters for several choices of the sound speed c,, all of
which have the same large grid number N and are very close
to those that are listed in Table I.
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FIG. 7. (Color online) Stability test of fully developed clusters.
(a) A perturbed density profile of Fig. 5(a) at t=1500 s and (b)
recovery of the regular clusters at r=2000 s.

Through the above examples (Fig. 3 in particular), we
note that numerical results with large grid lengths consider-
ably cut off the upper profile of the cluster due to the result-
ant numerical viscosity that increases with the grid length.
Therefore the resultant maximal density is smaller than that
of the analytical result. According to our numerical tests, this
can hardly be improved even when well-known higher-order
schemes are applied. However, this problem has not been
recognized in many studies, in which no analytical data of
characteristic parameters have been attained.

Because the mass (total vehicular number) remains un-
changed under the periodic boundary conditions (22), the
increase in the initial density p, or the total mass might be
able to generate more clusters. This is simply because a
greater “mass” would be in supply to fill with the humps.
Similarly, more clusters would be expected if we were to
decrease the relaxation time 7, by which the mass inside a
cluster reduces. This also seems true if we increase the sound
speed ¢,. The conclusions are actually implied in Eq. (4) but
not detailed in this study.

We alter the initial conditions to be

p(x,0)=p p,, for x <0.5L, (22)

p(x,0) = p*p,, for x=0.5L; v(x,0)=v,[p(x,0)].

With such initial data, two clusters are shown in Figs. 5 and
6. As usual the characteristic parameters p, and pp in these
two examples again agree well with their counterparts in
Table 1.
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In accordance with the comments in Sec. II D, we note
that the numerical schemes of the Kiihne and KK models
should also be conservative, which is similar to Eq. (21).
These correspond to the PW model in CF1 and CF2, with the
discretized terms of wv,, and uv,, on the right-hand sides,
respectively. Here, the second derivative v,, can be simply
discretized by

Vi + Ui — 20
V= A .

When the viscosity coefficients v and w are small, our nu-
merical tests show little difference in solutions between the
Kiihne model and the Payne model in CF1, and between the
KK model and the Payne model in CF2. One of these ex-
amples is shown in Fig. 6(a), to which the numerical result of
the Kiihne model is added, with the same parameters and a
coefficient v=0.01L. In the comparison, the result is almost
identical to that of the PW model in CF1.

For a wide cluster solution, the constant states p=p, and
p=pg are verified to be stable (Fig. 2). However, the stability
of the cluster structure (namely the transition layer) needs a
rigorous proof, which is a subject for future study. In the
present paper, we only test such stability numerically through
a perturbation on a fully developed wide cluster. All of the
results in the examples that are given in this paper are stable.
A typical result of these tests is shown in Fig. 7, in which a
perturbed profile of Fig. 5(a) is shown in Fig. 7(a), and the
recovery of the regular clusters is revealed in Fig. 7(b). We
note that the perturbation should not change the total number
of vehicles in the ring.

IV. CONCLUSIONS

Through the study of the PW model, we demonstrate that
the weak solution theory can be applied to determine the
characteristic parameters of a cluster in traffic flow. Pre-
cisely, certain conservation form(s) should be defined and
therefore the Rankine-Hugoniot conditions can be applied to
determine a discontinuity. By the theory and with reliable
evidence, we establish the relations between the PW model
and the Kiihne and KK models. Through these relations, we
suggest a certain conservation form of a viscous higher-order
traffic flow model, which includes a conservative scheme for
numerical discretization.

Compared with the asymptotic theory, the weak solution
theory is much easier to apply for solving (or disproving) a
wide cluster in higher-order traffic flow models. These deter-
mined parameter values are exact in a nonviscous model but
serve as a good approximation in the corresponding viscous
model. More importantly, the careful treatment of the con-
servation form for the acceleration equation closes the im-
portant gap in the development of higher-order traffic flow
models in the literature. Without this conservation form, the
solution depends very much on the design of numerical
schemes, and can be quite arbitrary and may not adequately
conform to the physically relevant properties.

The developed methods can be generalized or directly
applied to the studies of other higher-order traffic flow
models, or equations that take similar forms. Through
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such studies, whether a system can guarantee a solution of
wide cluster, or whether the model generates realistic
characteristic parameters of the cluster can be indicated
analytically.

There are two open but interesting questions that are wor-
thy of future studies. The first is the stability of the discussed
traveling wave solution (e.g., the transition layer of the
downstream front), which needs a rigorous proof. The sec-
ond is related to an improved higher-order traffic flow model
in Helbing [25], which was developed based on the KK
model [10]. It is apparent that the weak solution theory can
also be applied to this model, by dropping the higher-order
viscosity term. However. the study would be somewhat chal-

PHYSICAL REVIEW E 74, 026109 (2006)

lenging and more complicated because the model is com-
posed of three equations with the velocity variance being
taken as a solution variable in addition to the density and
velocity variables.
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